Database Management System

Relational Algebra and operations

Relational Algebra

- Basic operations:
- Selection (σ) Selects a subset of rows from relation.

Projection (π) Deletes unwanted columns from relation. Cross-product (X) Allows us to combine two relations.

- Set-difference () Tuples in reln. 1, but not in reln. 2. Union (\cup) Tuples in reln. 1 and in reln. 2.
- Additional operations:
- Intersection, join, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

π
(S2)
sname, rating

- Projection operator has to eliminate duplicates! (Why??)
- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

$$
\begin{aligned}
& \hline \begin{array}{l}
\text { age } \\
\hline 35.0 \\
55.5
\end{array} \\
& \pi_{\text {age }}(S 2)
\end{aligned}
$$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- Result relation can be the input for another relational algebra operation! (Operator composition.)

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

σ

$$
\text { rating }>8^{(S 2)}
$$

sname	rating
yuppy rusty	9

$$
\pi_{\text {sname, rating }}\left(\sigma_{\text {rating }>8}(S 2)\right)
$$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be union-compatible:
- Same number of fields.
'Corresponding' fields have the same type.
, What is the schema of result?

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

$S 1 \cup S 2$

sid	sname	rating	age
22	dustin	7	45.0

$S 1-S 2$

Cross-Product

- Each row of S1 is paired with each row of R1.
- Result schema has one field per field of S1 and R1, with field names ‘inherited’ if possible.

Conflict. Both S1 and R1 have a field called sid.

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	$10 / 10 / 96$
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	22	101	$10 / 10 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$
58	rusty	10	35.0	22	101	$10 / 10 / 96$
58	rusty	10	35.0	58	103	$11 / 12 / 96$

- Renaming operator: $\rho(C(1 \rightarrow \operatorname{sid} 1,5 \rightarrow \operatorname{sid} 2), S 1 \times R 1)$

Joins

- Condition Join:

$$
R \bowtie{ }_{c} S=\sigma_{c}(R \times S)
$$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	$11 / 12 / 96$
31	lubber	8	55.5	58	103	$11 / 12 / 96$

$S 1 \bowtie_{S 1 . s i d<R 1 . s i d} R 1$

- Result schema same as that of cross-product.
- Fewer tuples than cross-product, might be able to compute more efficiently
- Sometimes called a theta-join.

Joins

- Equi-Join: A special case of condition join where the condition c contains only equalities.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	$10 / 10 / 96$
58	rusty	10	35.0	103	$11 / 12 / 96$

$S 1 \bowtie_{\text {sid }} R 1$

- Result schema similar to cross-product, but only one copy of fields for which equality is specified.
- Natural Join: Equijoin on al/ common fields.

Division

- Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved all boats.

- Let A have 2 fields, x and y, B have only field y. $A / B=\{\langle x\rangle \mid \exists\langle x, y\rangle \in A \quad \forall\langle y\rangle \in B\}$
- i.e., A / B contains all x tuples (sailors) such that for every y tuple (boat) in B, there is an $x y$ tuple in A. Or. If the set of y values (boats) associated with an x value (sailor) in A contains all y values in B, the x value is in A / B.
- In general, x and y can be any lists of fields; y is the list of fields in B, and $x \quad y$ is the list of fields of A.

Examples of Division A / B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno
p2

pno
p2
p4
B2

pno
p1
p2
p4

B3

sno
s1
s4

sno
s1

A

A/B1
A/B2
A/B3

Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
- (Also true of joins, but joins are so common that systems implement joins specially.)
- Idea: For A / B, compute all x values that are not `disqualified' by some y value in B.
- x value is disqualified if by attaching y value from B, we obtain an $x y$ tuple that is not in A.

Disqualified x values: $\pi_{x}\left(\left(\pi_{x}(A) \times B\right)-A\right)$
$A / B: \quad \pi_{x}(A)-$ all disqualified tuples

Find names of sailors who've reserved boat \#103

- Solution 1: $\quad \pi_{\text {sname }}\left(\left(\sigma_{\text {bid=103 }}\right.\right.$ Reserves $) \bowtie$ Sailors $)$
* Solution 2: $\quad \rho\left(\right.$ Temp1, $\sigma_{b i d=103}$ Reserves $)$

$$
\begin{aligned}
& \rho(\text { Temp } 2, \text { Temp } 1 \bowtie \text { Sailors }) \\
& \pi_{\text {sname }}(\text { Temp } 2)
\end{aligned}
$$

* Solution 3: $\quad \pi_{\text {sname }}\left(\sigma_{\text {bid }=103}(\right.$ Reserves \bowtie Sailors $\left.)\right)$

Find names of sailors who've reserved a red boat

- Information about boat color only available in Boats; so need an extra join:
$\pi_{\text {sname }}\left(\left(\sigma_{\text {color }}=\right.\right.$ red ${ }^{\prime}$ Boats $) \bowtie$ Reserves \bowtie Sailors $)$
* A more efficient solution:
$\pi_{\text {sname }}\left(\pi_{\text {sid }}\left(\left(\pi_{\text {bid }} \sigma_{\text {color }}=\right.\right.\right.$ red ${ }^{\prime}$ Boats $\left.) \bowtie \operatorname{Res}\right) \bowtie$ Sailors $)$

A query optimizer can find this, given the first solution!

Find sailors who've reserved a red or a green boat

- Can identify all red or green boats, then find sailors who've reserved one of these boats:
$\rho\left(\right.$ Tempboats, $\left(\sigma_{\text {color }}=\right.$ red ${ }^{\prime} \vee$ color $='$ green' ${ }^{\prime}$ Boats $\left.)\right)$
$\pi_{\text {sname }}{ }^{(\text {Tempboats } \bowtie}$ Reserves \bowtie Sailors)
* Can also define Tempboats using union! (How?)
* What happens if \vee is replaced by \wedge in this query?

Find sailors who've reserved a red and a green boat

- Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that sid is a key for Sailors):
$\rho\left(\right.$ Tempred,$\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ red ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
ρ (Tempgreen, $\pi_{\text {sid }}\left(\left(\sigma_{\text {color }}=\right.\right.$ 'green' ${ }^{\prime}$ Boats $) \bowtie$ Reserves $\left.)\right)$
$\pi_{\text {sname }}(($ Tempred \cap Tempgreen $) \bowtie$ Sailors $)$

