
Database Management System

Relational Algebra and operations

Slide No:L6-4

 Basic operations:

◦ Selection () Selects a subset of rows from relation.

◦ Projection () Deletes unwanted columns from relation.

◦ Cross-product () Allows us to combine two relations.

◦ Set-difference () Tuples in reln. 1, but not in reln. 2.

◦ Union () Tuples in reln. 1 and in reln. 2.

 Additional operations:

◦ Intersection, join, division, renaming: Not essential, but
(very!) useful.

 Since each operation returns a relation, operations can be composed!
(Algebra is “closed”.)

Slide No:L6-5

sname rating

yuppy 9

lubber 8
guppy 5
rusty 10

sname rating

S
,

()2

age

35.0
55.5

age S()2

 Deletes attributes that are not
in projection list.

 Schema of result contains
exactly the fields in the
projection list, with the same
names that they had in the
(only) input relation.

 Projection operator has to
eliminate duplicates! (Why??)
◦ Note: real systems typically

don’t do duplicate elimination
unless the user explicitly asks
for it. (Why not?)

Slide No:L6-6

rating

S
8

2()

sid sname rating age
28 yuppy 9 35.0
58 rusty 10 35.0

sname rating

yuppy 9

rusty 10

sname rating rating

S
,

(())
8

2

 Selects rows that satisfy
selection condition.

 No duplicates in result!
(Why?)

 Schema of result identical to
schema of (only) input
relation.

 Result relation can be the
input for another relational
algebra operation! (Operator
composition.)

Slide No:L6-7

 All of these operations take two
input relations, which must be
union-compatible:

◦ Same number of fields.

◦ `Corresponding’ fields have
the same type.

 What is the schema of result?

sid sname rating age

22 dustin 7 45.0
31 lubber 8 55.5
58 rusty 10 35.0
44 guppy 5 35.0
28 yuppy 9 35.0

sid sname rating age

31 lubber 8 55.5
58 rusty 10 35.0

S S1 2

S S1 2

sid sname rating age

22 dustin 7 45.0

S S1 2

Slide No:L6-8

 Each row of S1 is paired with each row of R1.

 Result schema has one field per field of S1 and R1,
with field names `inherited’ if possible.

◦ Conflict: Both S1 and R1 have a field called sid.

 ((,),)C sid sid S R1 1 5 2 1 1

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 22 101 10/10/96

22 dustin 7 45.0 58 103 11/12/96

31 lubber 8 55.5 22 101 10/10/96

31 lubber 8 55.5 58 103 11/12/96

58 rusty 10 35.0 22 101 10/10/96

58 rusty 10 35.0 58 103 11/12/96

 Renaming operator:

Slide No:L6-9

 Condition Join:

 Result schema same as that of cross-product.

 Fewer tuples than cross-product, might be able
to compute more efficiently

 Sometimes called a theta-join.

R c S c R S ()

(sid) sname rating age (sid) bid day

22 dustin 7 45.0 58 103 11/12/96
31 lubber 8 55.5 58 103 11/12/96

S R
S sid R sid

1 1
1 1

. .

Slide No:L6-10

 Equi-Join: A special case of condition join where the
condition c contains only equalities.

 Result schema similar to cross-product, but only one
copy of fields for which equality is specified.

 Natural Join: Equijoin on all common fields.

sid sname rating age bid day

22 dustin 7 45.0 101 10/10/96
58 rusty 10 35.0 103 11/12/96

S R
sid

1 1

Slide No:L6-11

 Not supported as a primitive operator, but useful for
expressing queries like:
 Find sailors who have reserved all boats.

 Let A have 2 fields, x and y; B have only field y:
◦ A/B =

◦ i.e., A/B contains all x tuples (sailors) such that for

every y tuple (boat) in B, there is an xy tuple in A.
◦ Or: If the set of y values (boats) associated with an x

value (sailor) in A contains all y values in B, the x value
is in A/B.

 In general, x and y can be any lists of fields; y is the list
of fields in B, and x y is the list of fields of A.

 x x y A y B| ,

Slide No:L6-12

sno pno
s1 p1
s1 p2
s1 p3
s1 p4
s2 p1
s2 p2
s3 p2

s4 p2

s4 p4

pno
p2

pno
p2
p4

pno
p1
p2
p4

sno
s1
s2
s3
s4

sno
s1
s4

sno
s1

A

B
1

B2
B3

A/B1 A/B2 A/B3

Slide No:L6-13

 Division is not essential op; just a useful shorthand.

◦ (Also true of joins, but joins are so common that systems implement
joins specially.)

 Idea: For A/B, compute all x values that are not `disqualified’ by some y
value in B.

◦ x value is disqualified if by attaching y value from B, we obtain an xy
tuple that is not in A.

Disqualified x values:

 A/B:

 x x A B A((()))

 x A() all disqualified tuples

Slide No:L6-14

 Solution 1: sname bid
serves Sailors((Re))

103

 Solution 2: (, Re)Temp serves
bid

1
103

 (,)Temp Temp Sailors2 1

 sname Temp()2

 Solution 3: sname bid
serves Sailors((Re))

103

Slide No:L6-15

 Information about boat color only available in Boats; so need an
extra join:

 sname color red
Boats serves Sailors((

' '
) Re)

 A more efficient solution:

 sname sid bid color red
Boats s Sailors(((

' '
) Re))

A query optimizer can find this, given the first solution!

Slide No:L6-16

 Can identify all red or green boats, then find sailors who’ve
reserved one of these boats:

 (, (
' ' ' '

))Tempboats
color red color green

Boats

 sname Tempboats serves Sailors(Re)

 Can also define Tempboats using union! (How?)

 What happens if is replaced by in this query?

Slide No:L6-17

 Previous approach won’t work! Must identify sailors who’ve
reserved red boats, sailors who’ve reserved green boats, then find
the intersection (note that sid is a key for Sailors):

 (, ((
' '

) Re))Tempred
sid color red

Boats serves

 sname Tempred Tempgreen Sailors(())

 (, ((
' '

) Re))Tempgreen
sid color green

Boats serves

